
International Journal of Theoretical Physics, Vol. 38, No. 8, 1999

Quantization of Spherically Symmetric Solution of
SU(3) Yang ± Mills Theory
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A recent investigation of the SU(3) Yang±Mills field equations found several
classical solutions which exhibited a type of confinement due to gauge fields
which increased without bound as r ® ` . This increase of the gauge fields gave
these solutions an infinite field energy, raising questions about their physical
significance. In this paper we apply some ideas of Heisenberg about the
quantization of strongly interacting nonlinear fields to this classical solution and
find that at large r this quantization procedure softens the unphysical behavior
of the classical solution, while the interesting short-distance behavior is
maintained. This quantization procedure may provide a general method for
approximating the quantum corrections to certain classical field configurations.

1. INTRODUCTION

Recently several classical solutions to SU(3) Yang-Mills theory have

been discussed which possessed either spherical or cylindrical symmetry.(1)

These solutions had gauge fields which tended toward ` at large distances,
leading to a type of confining behavior if one considered these solutions as

background fields in which some test particle moved. These increasing gauge

fields also led these solutions to the undesired property of having infinite

field energy. One way in which these classical field configurations might

nevertheless have some physical importance is if the quantization of these
solutions reduced or eliminated the bad long-distance behavior. While per-

turbative quantization techniques work well for weakly interacting field theo-

ries such as QED (or QCD in the high-energy limit), they are not useful
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when dealing with strongly interacting field theories. In ref. 2 we applied

some ideas of Heisenberg’ s concerning the quantization of strongly interacting

nonlinear fields(3) to the cylindrical solution discussed in ref. 1 and found
that under certain assumptions the bad long-distance behavior of this solution

was eliminated. Here we apply the same procedure to the spherically symmet-

ric solution and show that again the bad long-distance behavior is eliminated.

In addition to the specific benefit that the Heisenberg quantization method

gives to the infinite-energy solutions discussed here and in ref. 2, it may

provide some general procedure for approximating the quantum corrections
to certain classical field configurations.

2. SPHERICALLY SYMMETRIC ANSATZ

We will briefly review the derivation and discuss some aspects of the

spherically symmetric solution. We take the ansatz for the SU(3) gauge field
as in refs. 4±6:
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where l a are the Gell-Mann matrices; a 5 1, 2, . . . , 8 is a color index; the

Latin indices i, j, k, l 5 1, 2, 3 are the space indices; i2 5 2 1; and r, u , f
are the usual spherical coordinates. Substituting the ansatz of Eqs. (1) (with

f 5 f 5 0) into the Yang±Mills equations
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yields the following complex set of coupled nonlinear differential equations(4):

r 2f 9 5 f 3 2 f 1 7fv2 1 2vw w 2 f (w2 1 w 2) (3a)

r 2v9 5 v3 2 v 1 7vf 2 1 2fw w 2 v(w2 1 w 2) (3b)

r 2w9 5 6w( f 2 1 v2) 2 12fv w (3c)

r 2 w 9 5 2 w ( f 2 1 v2) 2 4fvw (3d)

For the solution with increasing gauge fields we specialize by taking f 5
w 5 0 (the case where v 5 w 5 0 is similar) and find the following set of

nonlinear coupled equations:
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r 2v9 5 v3 2 v 2 vw2 (4a)

r 2w9 5 6wv2 (4b)

Near r 5 0 we take the series expansions for v and w as

v 5 1 1 v2
r 2

2!
1 . . . (5a)

w 5 w3
r 3

3!
1 . . . (5b)

where v2, w3 are constants which determine the initial conditions on v and w.

In the asymptotic limit r ® ` the form of the solutions to Eqs. (4) approaches

v ’ Asin(x a 1 f 0) (6a)

w ’ 6 F a x a 1
a 2 1

4

cos(2x a 1 2 f 0)

x a G (6b)

3A2 5 a ( a 2 1) (6c)

where x 5 r/r0 is a dimensionless radius and r0, f 0, and A are constants. The
second, strongly oscillating term in w(r) is kept since it contributes to the

asymptotic behavior of w9. We have not found an analytical solution for the

system (4), but it is straightforward to solve these equations numerically

with any standard differential equation package such as that available in

Mathematica.(7) Figure 1 shows a representative solution to Eqs. (4). The

exponent of the power law increase of w (which is represented by a in
the asymptotic expressions) depends on the initial conditions, which are

determined by the constants v2, w3. Generally the exponent a decreases from

a value in the range 2±3 to a value in the range 1.2±1.8 for a wide range of

initial conditions. This behavior can be seen in the log(w) versus log(x) plot

in Fig. 2. Although these classical gauge fields weaken slightly as r increases,

they still diverge as r ® ` . Due to this feature of the ansatz function w the
time part of the gauge field grows without bound as r ® ` , leading to both

a classical type of confinement (a test particle placed in the background field

of this solution would not be able to escape to ` ) and an undesired infinite

field energy for this solution. Various phenomenological studies of quarkonia

bound states use such increasing potentials to study the spectrum of the bound

state,(8) although usually the potential is taken to increase linearly. It should
be mentioned that the asymptotic form of the classical solution given in (6)

is expected to be altered by the quantum corrections. The classical short-

distance behavior as given in Fig. 1 should be roughly correct, since the pure

gauge SU(3) theory that we are considering is asymptotically free.
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Fig. 1. The w(x) confining function and the v(x) oscillating function of the SU(3) bunker

solution. The initial conditions for this particular solution are v2 5 0.1, w3 5 2.0, and xi 5 0.001.

Fig. 2. A plot of log(w) versus log(x) of the solution from Fig. 1 showing the different power

law behavior in the small x and large x regions.
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This ª bunkerº solution has ª magneticº and ª electricº fields associated

with it. Using the ansatz for A m from Eq. (1), we find these ª magneticº and

ª electricº fields have the following proportional ities:
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where for E a
r , Ha

u , and Ha
w the color index is a 5 1, 3, 4, 6, 8 and for

Ha
r , E a

u , and E a
w , a 5 2, 5, 7.

The asymptotic behavior of Ha
w , Ha

u and E a
w , E a

u is dominated by the

strongly oscillating function v(r). It may be postulated that quantum correc-
tions to this strongly oscillating solution tend to smooth it out, so that it

would not play a significant role in the large-r limit. From Eqs. (7) and the

asymptotic form of v(r), w(r) the radial components of the ª magneticº and

ª electricº have the following asymptotic behavior
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where the strongly oscillating portion of Ha
r is assumed not to contribute in

the limit of large r due to smoothing by quantum corrections. The radial

ª electricº field falls off slower than 1/r 2 (since a . 1) indicating the presence

of a confining potential. The 1/r 2 falloff of Ha
r indicates that this solution

carries a ª magneticº charge. This was also true for the simple solutions
discussed in refs. 4 and 5. This leads to the result that if a test is placed in

the background field of the bunker solution, the composite system will have

unusual spin properties (i.e., if the test particle is a boson, the system will

behave as a fermion, and if the test particle is a fermion, the system will

behave as a boson). This is the spin from isospin mechanism.(9)

By examining the classical SU(3) field equations. (4) we have found
field configurations which lead to a classical confining behavior and which

have some similarities with certain phenomenological models used to study

heavy quark bound states. The most significant drawback of the present

solution is that it has infinite field energy. The asymptotic form of the energy

density goes as
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Since we found a . 1, this energy density will yield an infinite field energy

when integrated over all space. This can be compared with the finite field

energy monopole (10) and dyon solutions.(11,12)

3. QUANTIZATION OF THE ª BUNKERº SOLUTION

Although the classical confining behavior of this ª bunkerº solution may

seem interesting due to its similarity with certain phenomenological potentials,

the infinite field energy discussed at the end of the previous section strongly
argues against the physical importance of this solution. One possible escape

from this conclusion is if quantum effects weakened or removed the bad long

distance behavior of these solutions. However, strongly interacting nonlinear

theories are notoriously hard to quantize. In order to take into account the

quantum effects on the bunker solution we employ a method used by Heisenb-

erg(3) in attempts to quantize the nonlinear Dirac equation. By applying the
dynamical equation of motion (in Heisenberg’ s case the nonlinear Dirac

equation) to an n-point Green’ s function Gn , one would arrive at an equation

relating Gn to higher order Green’ s functions (Gn 1 1, for example). Then

applying the dynamical equations of motion to the higher Green’ s functions,

one would get equations relating these higher Green’ s functions to even larger
order Green’ s functions. Continuing in this way, one arrives at an infinite set

of differential equations relating Green’ s functions of all orders. To handle

this, Heisenberg employed the Tamm±Dankoff method whereby he only

considered Green’ s functions up to some order, thus cutting off the infinite

set of equations. Here we will employ a similar method to the ª bunkerº

solution in terms of the ansatz functions v and w. Previously (2) we used
this method on an infinite-energy, stringlike classical solution to the SU(3)

equations. For more details on the application of the Heisenberg method to

such classical solutions we refer the reader to that article.

In order to use Heisenberg’ s quantization method on the nonlinear equa-

tions we make the following assumptions:

1. The degrees of freedom relevant for studying the ª bunkerº solution
(both classically and also quantum mechanically) are given entirely by the

two ansatz functions w, v. No other degrees of freedom arise through the

quantization process.

2. From Eq. (6b) and Fig. 1, w is a smoothly varying function for large

x, while v is strongly oscillating. Thus we take w(x) to be almost a classical

degree of freedom, while v(x) is treated as a fully quantum mechanical degree
of freedom. One might think that in this way only the behavior of v would

change while w stayed the same. However, since w and v are coupled via

the equations of motion, we find that both functions are modified.

To begin we replace the ansatz functions by operators wÃ(x), vÃ(x):
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x2vÃ9 5 vÃ3 2 vÃ2 vÃwÃ2 (10a)

x2wÃ9 5 6wÃvÃ2 (10b)

where the prime denotes a derivative with respect to x. Taking into account

assumption 2, we let wÃ ® w become just a classical function again, and

replace vÃ2 in Eq. (10b) by its expectation value to arrive at

x2vÃ9 5 vÃ3 2 vÃ2 vÃw2 (11a)

x2w9 5 6w ^ v2 & (11b)

where the expectation value ^ vÃ2 & is taken with respect to fluctuations of v
around the classical solution of Eq. (6) or Fig. 1 (i.e., ^ vÃ2 & 5 * $veiS/ " v2,
where S is the action and $v is a path integral measure over all possible

configurations of v). If we take the expectation value of Eq. (11a), we almost

have a closed system of differential equations relating w and ^ vÃ& . The ^ vÃ2 &
term from Eq. (11b) and the ^ vÃ3 & term from Eq. (11a) prevent the equations

from being closed. Applying the operation x2 - 2/ - x2 to the operator vÃ2 and

using Eq. (11a) yields

x2(vÃ2)9 5 2vÃ2(vÃ2 2 1 2 w) 1 2x2(vÃ8)2 (12)

If we take the expectation of the above equation with respect to fluctuations

in the ansatz function operator vÃ2 and combine this with Eq. (11b) we almost

have a closed system for determining w and vÃ2 except for the ^ (vÃ8)2 & term
which comes from the last term on the right-hand side of Eq. (12). Continuing

in this way, one can obtain an infinite set of equations for various powers

of the ansatz function operator (i.e., vÃn). These higher order equations never

close. To deal with this problem we follow Heisenberg, and make some

assumption that effectively cuts off the system of equations at some finite
order. By taking the expectation of Eq. (12) and further by assuming that

^ (vÃ8)2 & 5
^ vÃ2 & 2 v2

0

x2 (13)

we arrive at a closed system of equations from Eqs. (11b), (12):

x2 ^ vÃ2 & 9 5 2 ^ vÃ2 & 2 2 2 ^ vÃ2 & w 2 2v2
0 (14a)

x2w9 5 6w ^ vÃ2 & (14b)

By making the assumption of Eq. (13) we have simplified Eqs. (11b) and

(12) to the closed system given by Eqs. (14a) and (14b). It is straightforward

to show that in the limit x ® `
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^ vÃ2 & 5 v2
0 1

a

x a (15a)

w 5
b

x a (15b)

solves Eqs. (14a) and (14b) provided that v2
0 5 1, b 5 2 a, and a 5 2, 2 3.

In order for ^ vÃ2 & and w to have acceptable behavior at x ® ` we take the

a 5 2 solution. Substituting the above expressions for ^ vÃ2 & with v0 5 1 1

and w back into Eq. (11a), and assuming that ^ vÃ3 & 5 ^ vÃ& ^ vÃ2 & gives the

following equations for ^ vÃ& in the x ® ` limit

x2 ^ vÃ& 9 5 ^ vÃ& ( ^ vÃ2 & 2 1) 5 ^ vÃ&
a

x2 (16)

we find that Eq. (16) is solved in the x ® ` limit by

^ vÃ& 5 6 1 1 1
a

6x2 2 (17)

Equation (17) together with Eqs. (15a) and (15b) provide information on the

behavior of the ª classicalº ansatz function w and the ª quantumº ansatz
function v via ^ vÃ& and ^ vÃ2 & . The main point of interest is that after applying

the Heisenberg-like quantization procedure to the classical solution of Fig.

1, the infinite increase of the ansatz function w has changed to an acceptable

asymptotic behavior (i.e., one that leads to a finite field energy). By replacing

the v2 and (v8)2 terms in Eq. (9) with ^ vÃ2 & and ( ^ vÃ& 8)2 from Eqs. (15a) and

(17), respectively, and also using w from eq. (15b) we find that the field
energy density of the quantized ª bunkerº solution takes the form

% }
a2

x8 (18)

in the limit in which quantum fluctuations become important (i.e., for non-

Abelian theories which exhibit asymptotic freedom this means in the low-
energy or x ® ` range) the energy density goes from the form given in Eq.

(9) to that given in Eq. (18). This can be seen to give a finite field energy.

In the high-energy or short-distance regime we assume that the fields approach

the classical configuration of Fig. 1 due to asymptotic freedom. This classical

configuration is well behaved at x 5 0, but would yield an infinite field
energy due to its divergence as x ® ` . In the long-distance or low-energy

limit the energy density should go over into the form given in Eq. (18), which

would then result in a finite field energy for this configuration, since the

integral of Eq. (18) over the large-x region, where it is valid, would give a

finite field energy.
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Finally, by using w, ^ vÃ& , and ^ vÃ2 & in the expressions for E and H given

in Eq. (7) we find that the radial fields (Er , Hr) go like a/r 4 while the angular

fields (E u , f , H u , f ) go like a/r 3. Thus the quantization procedure outlined
above modifies the undesirable long distance behavior of the ª electricº and

ª magneticº fields as well as the energy density.

4. DISCUSSION

In this paper we reviewed a certain classical field configuration for an

SU(3) gauge theory. Near the origin the field configurations are finite, but

as r ® ` the fields diverge (see Figs. 1 and 2). This increasing field strength
leads to a classical type of confinement in that a test particle placed in the

background field of this solution cannot escape to ` . Unfortunately, this

diverging of the field as r ® ` also leads to this configuration having an

infinite field energy. Previously it was suggested that quantum effects might

soften or eliminate this bad long-distance behavior. By applying a method

similar to that Heisenberg used in quantizing the nonlinear Dirac equation
we find that the long-distance behavior is changed so as to give finite field

energy. At short distances the fields should approach the classical configura-

tion of Fig. 1 from the asymptotic freedom of the SU(3) gauge theory. This

classical solution has the good features of not being divergent at r 5 0 and

in some limited region around r 5 0 the fields increase in a way similiar to

that found in some phenomenological models of confinement. At long dis-
tances the fields should approach the configuration given by Eqs. (15a),

(15b), and (17) where the quantum effects have eliminated the divergence

of the fields and field energy density as r ® ` .
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